|
@@ -0,0 +1,284 @@
|
|
|
+# coding: utf-8
|
|
|
+import numpy as np
|
|
|
+from functions import *
|
|
|
+from util import im2col, col2im
|
|
|
+
|
|
|
+
|
|
|
+class Relu:
|
|
|
+ def __init__(self):
|
|
|
+ self.mask = None
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ self.mask = (x <= 0)
|
|
|
+ out = x.copy()
|
|
|
+ out[self.mask] = 0
|
|
|
+
|
|
|
+ return out
|
|
|
+
|
|
|
+ def backward(self, dout):
|
|
|
+ dout[self.mask] = 0
|
|
|
+ dx = dout
|
|
|
+
|
|
|
+ return dx
|
|
|
+
|
|
|
+
|
|
|
+class Sigmoid:
|
|
|
+ def __init__(self):
|
|
|
+ self.out = None
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ out = sigmoid(x)
|
|
|
+ self.out = out
|
|
|
+ return out
|
|
|
+
|
|
|
+ def backward(self, dout):
|
|
|
+ dx = dout * (1.0 - self.out) * self.out
|
|
|
+
|
|
|
+ return dx
|
|
|
+
|
|
|
+
|
|
|
+class Affine:
|
|
|
+ def __init__(self, W, b):
|
|
|
+ self.W =W
|
|
|
+ self.b = b
|
|
|
+
|
|
|
+ self.x = None
|
|
|
+ self.original_x_shape = None
|
|
|
+ # 权重和偏置参数的导数
|
|
|
+ self.dW = None
|
|
|
+ self.db = None
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ # 对应张量
|
|
|
+ self.original_x_shape = x.shape
|
|
|
+ x = x.reshape(x.shape[0], -1)
|
|
|
+ self.x = x
|
|
|
+
|
|
|
+ out = np.dot(self.x, self.W) + self.b
|
|
|
+
|
|
|
+ return out
|
|
|
+
|
|
|
+ def backward(self, dout):
|
|
|
+ dx = np.dot(dout, self.W.T)
|
|
|
+ self.dW = np.dot(self.x.T, dout)
|
|
|
+ self.db = np.sum(dout, axis=0)
|
|
|
+
|
|
|
+ dx = dx.reshape(*self.original_x_shape) # 还原输入数据的形状(对应张量)
|
|
|
+ return dx
|
|
|
+
|
|
|
+
|
|
|
+class SoftmaxWithLoss:
|
|
|
+ def __init__(self):
|
|
|
+ self.loss = None
|
|
|
+ self.y = None # softmax的输出
|
|
|
+ self.t = None # 监督数据
|
|
|
+
|
|
|
+ def forward(self, x, t):
|
|
|
+ self.t = t
|
|
|
+ self.y = softmax(x)
|
|
|
+ self.loss = cross_entropy_error(self.y, self.t)
|
|
|
+
|
|
|
+ return self.loss
|
|
|
+
|
|
|
+ def backward(self, dout=1):
|
|
|
+ batch_size = self.t.shape[0]
|
|
|
+ if self.t.size == self.y.size: # 监督数据是one-hot-vector的情况
|
|
|
+ dx = (self.y - self.t) / batch_size
|
|
|
+ else:
|
|
|
+ dx = self.y.copy()
|
|
|
+ dx[np.arange(batch_size), self.t] -= 1
|
|
|
+ dx = dx / batch_size
|
|
|
+
|
|
|
+ return dx
|
|
|
+
|
|
|
+
|
|
|
+class Dropout:
|
|
|
+ """
|
|
|
+ http://arxiv.org/abs/1207.0580
|
|
|
+ """
|
|
|
+ def __init__(self, dropout_ratio=0.5):
|
|
|
+ self.dropout_ratio = dropout_ratio
|
|
|
+ self.mask = None
|
|
|
+
|
|
|
+ def forward(self, x, train_flg=True):
|
|
|
+ if train_flg:
|
|
|
+ self.mask = np.random.rand(*x.shape) > self.dropout_ratio
|
|
|
+ return x * self.mask
|
|
|
+ else:
|
|
|
+ return x * (1.0 - self.dropout_ratio)
|
|
|
+
|
|
|
+ def backward(self, dout):
|
|
|
+ return dout * self.mask
|
|
|
+
|
|
|
+
|
|
|
+class BatchNormalization:
|
|
|
+ """
|
|
|
+ http://arxiv.org/abs/1502.03167
|
|
|
+ """
|
|
|
+ def __init__(self, gamma, beta, momentum=0.9, running_mean=None, running_var=None):
|
|
|
+ self.gamma = gamma
|
|
|
+ self.beta = beta
|
|
|
+ self.momentum = momentum
|
|
|
+ self.input_shape = None # Conv层的情况下为4维,全连接层的情况下为2维
|
|
|
+
|
|
|
+ # 测试时使用的平均值和方差
|
|
|
+ self.running_mean = running_mean
|
|
|
+ self.running_var = running_var
|
|
|
+
|
|
|
+ # backward时使用的中间数据
|
|
|
+ self.batch_size = None
|
|
|
+ self.xc = None
|
|
|
+ self.std = None
|
|
|
+ self.dgamma = None
|
|
|
+ self.dbeta = None
|
|
|
+
|
|
|
+ def forward(self, x, train_flg=True):
|
|
|
+ self.input_shape = x.shape
|
|
|
+ if x.ndim != 2:
|
|
|
+ N, C, H, W = x.shape
|
|
|
+ x = x.reshape(N, -1)
|
|
|
+
|
|
|
+ out = self.__forward(x, train_flg)
|
|
|
+
|
|
|
+ return out.reshape(*self.input_shape)
|
|
|
+
|
|
|
+ def __forward(self, x, train_flg):
|
|
|
+ if self.running_mean is None:
|
|
|
+ N, D = x.shape
|
|
|
+ self.running_mean = np.zeros(D)
|
|
|
+ self.running_var = np.zeros(D)
|
|
|
+
|
|
|
+ if train_flg:
|
|
|
+ mu = x.mean(axis=0)
|
|
|
+ xc = x - mu
|
|
|
+ var = np.mean(xc**2, axis=0)
|
|
|
+ std = np.sqrt(var + 10e-7)
|
|
|
+ xn = xc / std
|
|
|
+
|
|
|
+ self.batch_size = x.shape[0]
|
|
|
+ self.xc = xc
|
|
|
+ self.xn = xn
|
|
|
+ self.std = std
|
|
|
+ self.running_mean = self.momentum * self.running_mean + (1-self.momentum) * mu
|
|
|
+ self.running_var = self.momentum * self.running_var + (1-self.momentum) * var
|
|
|
+ else:
|
|
|
+ xc = x - self.running_mean
|
|
|
+ xn = xc / ((np.sqrt(self.running_var + 10e-7)))
|
|
|
+
|
|
|
+ out = self.gamma * xn + self.beta
|
|
|
+ return out
|
|
|
+
|
|
|
+ def backward(self, dout):
|
|
|
+ if dout.ndim != 2:
|
|
|
+ N, C, H, W = dout.shape
|
|
|
+ dout = dout.reshape(N, -1)
|
|
|
+
|
|
|
+ dx = self.__backward(dout)
|
|
|
+
|
|
|
+ dx = dx.reshape(*self.input_shape)
|
|
|
+ return dx
|
|
|
+
|
|
|
+ def __backward(self, dout):
|
|
|
+ dbeta = dout.sum(axis=0)
|
|
|
+ dgamma = np.sum(self.xn * dout, axis=0)
|
|
|
+ dxn = self.gamma * dout
|
|
|
+ dxc = dxn / self.std
|
|
|
+ dstd = -np.sum((dxn * self.xc) / (self.std * self.std), axis=0)
|
|
|
+ dvar = 0.5 * dstd / self.std
|
|
|
+ dxc += (2.0 / self.batch_size) * self.xc * dvar
|
|
|
+ dmu = np.sum(dxc, axis=0)
|
|
|
+ dx = dxc - dmu / self.batch_size
|
|
|
+
|
|
|
+ self.dgamma = dgamma
|
|
|
+ self.dbeta = dbeta
|
|
|
+
|
|
|
+ return dx
|
|
|
+
|
|
|
+
|
|
|
+class Convolution:
|
|
|
+ def __init__(self, W, b, stride=1, pad=0):
|
|
|
+ self.W = W
|
|
|
+ self.b = b
|
|
|
+ self.stride = stride
|
|
|
+ self.pad = pad
|
|
|
+
|
|
|
+ # 中间数据(backward时使用)
|
|
|
+ self.x = None
|
|
|
+ self.col = None
|
|
|
+ self.col_W = None
|
|
|
+
|
|
|
+ # 权重和偏置参数的梯度
|
|
|
+ self.dW = None
|
|
|
+ self.db = None
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ FN, C, FH, FW = self.W.shape
|
|
|
+ N, C, H, W = x.shape
|
|
|
+ out_h = 1 + int((H + 2*self.pad - FH) / self.stride)
|
|
|
+ out_w = 1 + int((W + 2*self.pad - FW) / self.stride)
|
|
|
+
|
|
|
+ col = im2col(x, FH, FW, self.stride, self.pad)
|
|
|
+ col_W = self.W.reshape(FN, -1).T
|
|
|
+
|
|
|
+ out = np.dot(col, col_W) + self.b
|
|
|
+ out = out.reshape(N, out_h, out_w, -1).transpose(0, 3, 1, 2)
|
|
|
+
|
|
|
+ self.x = x
|
|
|
+ self.col = col
|
|
|
+ self.col_W = col_W
|
|
|
+
|
|
|
+ return out
|
|
|
+
|
|
|
+ def backward(self, dout):
|
|
|
+ FN, C, FH, FW = self.W.shape
|
|
|
+ dout = dout.transpose(0,2,3,1).reshape(-1, FN)
|
|
|
+
|
|
|
+ self.db = np.sum(dout, axis=0)
|
|
|
+ self.dW = np.dot(self.col.T, dout)
|
|
|
+ self.dW = self.dW.transpose(1, 0).reshape(FN, C, FH, FW)
|
|
|
+
|
|
|
+ dcol = np.dot(dout, self.col_W.T)
|
|
|
+ dx = col2im(dcol, self.x.shape, FH, FW, self.stride, self.pad)
|
|
|
+
|
|
|
+ return dx
|
|
|
+
|
|
|
+
|
|
|
+class Pooling:
|
|
|
+ def __init__(self, pool_h, pool_w, stride=1, pad=0):
|
|
|
+ self.pool_h = pool_h
|
|
|
+ self.pool_w = pool_w
|
|
|
+ self.stride = stride
|
|
|
+ self.pad = pad
|
|
|
+
|
|
|
+ self.x = None
|
|
|
+ self.arg_max = None
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ N, C, H, W = x.shape
|
|
|
+ out_h = int(1 + (H - self.pool_h) / self.stride)
|
|
|
+ out_w = int(1 + (W - self.pool_w) / self.stride)
|
|
|
+
|
|
|
+ col = im2col(x, self.pool_h, self.pool_w, self.stride, self.pad)
|
|
|
+ col = col.reshape(-1, self.pool_h*self.pool_w)
|
|
|
+
|
|
|
+ arg_max = np.argmax(col, axis=1)
|
|
|
+ out = np.max(col, axis=1)
|
|
|
+ out = out.reshape(N, out_h, out_w, C).transpose(0, 3, 1, 2)
|
|
|
+
|
|
|
+ self.x = x
|
|
|
+ self.arg_max = arg_max
|
|
|
+
|
|
|
+ return out
|
|
|
+
|
|
|
+ def backward(self, dout):
|
|
|
+ dout = dout.transpose(0, 2, 3, 1)
|
|
|
+
|
|
|
+ pool_size = self.pool_h * self.pool_w
|
|
|
+ dmax = np.zeros((dout.size, pool_size))
|
|
|
+ dmax[np.arange(self.arg_max.size), self.arg_max.flatten()] = dout.flatten()
|
|
|
+ dmax = dmax.reshape(dout.shape + (pool_size,))
|
|
|
+
|
|
|
+ dcol = dmax.reshape(dmax.shape[0] * dmax.shape[1] * dmax.shape[2], -1)
|
|
|
+ dx = col2im(dcol, self.x.shape, self.pool_h, self.pool_w, self.stride, self.pad)
|
|
|
+
|
|
|
+ return dx
|