123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849 |
- /***************************************************************************************************************
- * Razor AHRS Firmware v1.4.2.2
- * 9 Degree of Measurement Attitude and Heading Reference System
- * for Sparkfun "9DOF Razor IMU" (SEN-10125 and SEN-10736)
- * and "9DOF Sensor Stick" (SEN-10183, 10321 and SEN-10724)
- *
- * Released under GNU GPL (General Public License) v3.0
- * Copyright (C) 2013 Peter Bartz [http://ptrbrtz.net]
- * Copyright (C) 2011-2012 Quality & Usability Lab, Deutsche Telekom Laboratories, TU Berlin
- *
- * Infos, updates, bug reports, contributions and feedback:
- * https://github.com/ptrbrtz/razor-9dof-ahrs
- *
- *
- * History:
- * * Original code (http://code.google.com/p/sf9domahrs/) by Doug Weibel and Jose Julio,
- * based on ArduIMU v1.5 by Jordi Munoz and William Premerlani, Jose Julio and Doug Weibel. Thank you!
- *
- * * Updated code (http://groups.google.com/group/sf_9dof_ahrs_update) by David Malik (david.zsolt.malik@gmail.com)
- * for new Sparkfun 9DOF Razor hardware (SEN-10125).
- *
- * * Updated and extended by Peter Bartz (peter-bartz@gmx.de):
- * * v1.3.0
- * * Cleaned up, streamlined and restructured most of the code to make it more comprehensible.
- * * Added sensor calibration (improves precision and responsiveness a lot!).
- * * Added binary yaw/pitch/roll output.
- * * Added basic serial command interface to set output modes/calibrate sensors/synch stream/etc.
- * * Added support to synch automatically when using Rovering Networks Bluetooth modules (and compatible).
- * * Wrote new easier to use test program (using Processing).
- * * Added support for new version of "9DOF Razor IMU": SEN-10736.
- * --> The output of this code is not compatible with the older versions!
- * --> A Processing sketch to test the tracker is available.
- * * v1.3.1
- * * Initializing rotation matrix based on start-up sensor readings -> orientation OK right away.
- * * Adjusted gyro low-pass filter and output rate settings.
- * * v1.3.2
- * * Adapted code to work with new Arduino 1.0 (and older versions still).
- * * v1.3.3
- * * Improved synching.
- * * v1.4.0
- * * Added support for SparkFun "9DOF Sensor Stick" (versions SEN-10183, SEN-10321 and SEN-10724).
- * * v1.4.1
- * * Added output modes to read raw and/or calibrated sensor data in text or binary format.
- * * Added static magnetometer soft iron distortion compensation
- * * v1.4.2
- * * (No core firmware changes)
- * * v1.4.2.1
- * * New output mode to support ROS Imu use emits YPR + accel + rot. vel.
- * * v1.4.2.2
- * * New input mode to set calibration parameters
- *
- * TODOs:
- * * Allow optional use of EEPROM for storing and reading calibration values.
- * * Use self-test and temperature-compensation features of the sensors.
- ***************************************************************************************************************/
- /*
- "9DOF Razor IMU" hardware versions: SEN-10125 and SEN-10736
- ATMega328@3.3V, 8MHz
- ADXL345 : Accelerometer
- HMC5843 : Magnetometer on SEN-10125
- HMC5883L : Magnetometer on SEN-10736
- ITG-3200 : Gyro
- Arduino IDE : Select board "Arduino Pro or Pro Mini (3.3v, 8Mhz) w/ATmega328"
- */
- /*
- "9DOF Sensor Stick" hardware versions: SEN-10183, SEN-10321 and SEN-10724
- ADXL345 : Accelerometer
- HMC5843 : Magnetometer on SEN-10183 and SEN-10321
- HMC5883L : Magnetometer on SEN-10724
- ITG-3200 : Gyro
- */
- /*
- Axis definition (differs from definition printed on the board!):
- X axis pointing forward (towards the short edge with the connector holes)
- Y axis pointing to the right
- and Z axis pointing down.
-
- Positive yaw : clockwise
- Positive roll : right wing down
- Positive pitch : nose up
-
- Transformation order: first yaw then pitch then roll.
- */
- /*
- Serial commands that the firmware understands:
-
- "#c<params>" - SET _c_alibration parameters. The available options are:
- [a|m|g|c|t] _a_ccelerometer, _m_agnetometer, _g_yro, magnetometerellipsoid_c_enter, magnetometerellipsoid_t_ransform
- [x|y|z] x,y or z
- [m|M|X|Y|Z] _m_in or _M_ax (accel or magnetometer), X, Y, or Z of transform (magnetometerellipsoid_t_ransform)
- "#p" - PRINT current calibration values
- "#o<params>" - Set OUTPUT mode and parameters. The available options are:
-
- // Streaming output
- "#o0" - DISABLE continuous streaming output. Also see #f below.
- "#o1" - ENABLE continuous streaming output.
-
- // Angles output
- "#ob" - Output angles in BINARY format (yaw/pitch/roll as binary float, so one output frame
- is 3x4 = 12 bytes long).
- "#ot" - Output angles in TEXT format (Output frames have form like "#YPR=-142.28,-5.38,33.52",
- followed by carriage return and line feed [\r\n]).
- "#ox" - Output angles and linear acceleration and rotational
- velocity. Angles are in degrees, acceleration is
- in units of 1.0 = 1/256 G (9.8/256 m/s^2). Rotational
- velocity is in rad/s^2. (Output frames have form like
- "#YPRAG=-142.28,-5.38,33.52,0.1,0.1,1.0,0.01,0.01,0.01",
- followed by carriage return and line feed [\r\n]).
- // Sensor calibration
- "#oc" - Go to CALIBRATION output mode.
- "#on" - When in calibration mode, go on to calibrate NEXT sensor.
-
- // Sensor data output
- "#osct" - Output CALIBRATED SENSOR data of all 9 axes in TEXT format.
- One frame consist of three lines - one for each sensor: acc, mag, gyr.
- "#osrt" - Output RAW SENSOR data of all 9 axes in TEXT format.
- One frame consist of three lines - one for each sensor: acc, mag, gyr.
- "#osbt" - Output BOTH raw and calibrated SENSOR data of all 9 axes in TEXT format.
- One frame consist of six lines - like #osrt and #osct combined (first RAW, then CALIBRATED).
- NOTE: This is a lot of number-to-text conversion work for the little 8MHz chip on the Razor boards.
- In fact it's too much and an output frame rate of 50Hz can not be maintained. #osbb.
- "#oscb" - Output CALIBRATED SENSOR data of all 9 axes in BINARY format.
- One frame consist of three 3x3 float values = 36 bytes. Order is: acc x/y/z, mag x/y/z, gyr x/y/z.
- "#osrb" - Output RAW SENSOR data of all 9 axes in BINARY format.
- One frame consist of three 3x3 float values = 36 bytes. Order is: acc x/y/z, mag x/y/z, gyr x/y/z.
- "#osbb" - Output BOTH raw and calibrated SENSOR data of all 9 axes in BINARY format.
- One frame consist of 2x36 = 72 bytes - like #osrb and #oscb combined (first RAW, then CALIBRATED).
-
- // Error message output
- "#oe0" - Disable ERROR message output.
- "#oe1" - Enable ERROR message output.
-
-
- "#f" - Request one output frame - useful when continuous output is disabled and updates are
- required in larger intervals only. Though #f only requests one reply, replies are still
- bound to the internal 20ms (50Hz) time raster. So worst case delay that #f can add is 19.99ms.
-
-
- "#s<xy>" - Request synch token - useful to find out where the frame boundaries are in a continuous
- binary stream or to see if tracker is present and answering. The tracker will send
- "#SYNCH<xy>\r\n" in response (so it's possible to read using a readLine() function).
- x and y are two mandatory but arbitrary bytes that can be used to find out which request
- the answer belongs to.
-
-
- ("#C" and "#D" - Reserved for communication with optional Bluetooth module.)
-
- Newline characters are not required. So you could send "#ob#o1#s", which
- would set binary output mode, enable continuous streaming output and request
- a synch token all at once.
-
- The status LED will be on if streaming output is enabled and off otherwise.
-
- Byte order of binary output is little-endian: least significant byte comes first.
- */
- /*****************************************************************/
- /*********** USER SETUP AREA! Set your options here! *************/
- /*****************************************************************/
- // HARDWARE OPTIONS
- /*****************************************************************/
- // Select your hardware here by uncommenting one line!
- //#define HW__VERSION_CODE 10125 // SparkFun "9DOF Razor IMU" version "SEN-10125" (HMC5843 magnetometer)
- #define HW__VERSION_CODE 10736 // SparkFun "9DOF Razor IMU" version "SEN-10736" (HMC5883L magnetometer)
- //#define HW__VERSION_CODE 10183 // SparkFun "9DOF Sensor Stick" version "SEN-10183" (HMC5843 magnetometer)
- //#define HW__VERSION_CODE 10321 // SparkFun "9DOF Sensor Stick" version "SEN-10321" (HMC5843 magnetometer)
- //#define HW__VERSION_CODE 10724 // SparkFun "9DOF Sensor Stick" version "SEN-10724" (HMC5883L magnetometer)
- // OUTPUT OPTIONS
- /*****************************************************************/
- // Set your serial port baud rate used to send out data here!
- #define OUTPUT__BAUD_RATE 57600
- // Sensor data output interval in milliseconds
- // This may not work, if faster than 20ms (=50Hz)
- // Code is tuned for 20ms, so better leave it like that
- #define OUTPUT__DATA_INTERVAL 20 // in milliseconds
- // Output mode definitions (do not change)
- #define OUTPUT__MODE_CALIBRATE_SENSORS 0 // Outputs sensor min/max values as text for manual calibration
- #define OUTPUT__MODE_ANGLES 1 // Outputs yaw/pitch/roll in degrees
- #define OUTPUT__MODE_SENSORS_CALIB 2 // Outputs calibrated sensor values for all 9 axes
- #define OUTPUT__MODE_SENSORS_RAW 3 // Outputs raw (uncalibrated) sensor values for all 9 axes
- #define OUTPUT__MODE_SENSORS_BOTH 4 // Outputs calibrated AND raw sensor values for all 9 axes
- #define OUTPUT__MODE_ANGLES_AG_SENSORS 5 // Outputs yaw/pitch/roll in degrees + linear accel + rot. vel
- // Output format definitions (do not change)
- #define OUTPUT__FORMAT_TEXT 0 // Outputs data as text
- #define OUTPUT__FORMAT_BINARY 1 // Outputs data as binary float
- // Select your startup output mode and format here!
- int output_mode = OUTPUT__MODE_ANGLES;
- int output_format = OUTPUT__FORMAT_TEXT;
- // Select if serial continuous streaming output is enabled per default on startup.
- #define OUTPUT__STARTUP_STREAM_ON false // true or false
- // If set true, an error message will be output if we fail to read sensor data.
- // Message format: "!ERR: reading <sensor>", followed by "\r\n".
- boolean output_errors = false; // true or false
- // Bluetooth
- // You can set this to true, if you have a Rovering Networks Bluetooth Module attached.
- // The connect/disconnect message prefix of the module has to be set to "#".
- // (Refer to manual, it can be set like this: SO,#)
- // When using this, streaming output will only be enabled as long as we're connected. That way
- // receiver and sender are synchronzed easily just by connecting/disconnecting.
- // It is not necessary to set this! It just makes life easier when writing code for
- // the receiving side. The Processing test sketch also works without setting this.
- // NOTE: When using this, OUTPUT__STARTUP_STREAM_ON has no effect!
- #define OUTPUT__HAS_RN_BLUETOOTH false // true or false
- // SENSOR CALIBRATION
- /*****************************************************************/
- // How to calibrate? Read the tutorial at http://dev.qu.tu-berlin.de/projects/sf-razor-9dof-ahrs
- // Put MIN/MAX and OFFSET readings for your board here!
- // Accelerometer
- // "accel x,y,z (min/max) = X_MIN/X_MAX Y_MIN/Y_MAX Z_MIN/Z_MAX"
- float ACCEL_X_MIN = -250;
- float ACCEL_X_MAX = 250;
- float ACCEL_Y_MIN = -250;
- float ACCEL_Y_MAX = 250;
- float ACCEL_Z_MIN = -250;
- float ACCEL_Z_MAX = 250;
- // Magnetometer (standard calibration mode)
- // "magn x,y,z (min/max) = X_MIN/X_MAX Y_MIN/Y_MAX Z_MIN/Z_MAX"
- float MAGN_X_MIN = -600;
- float MAGN_X_MAX = 600;
- float MAGN_Y_MIN = -600;
- float MAGN_Y_MAX = 600;
- float MAGN_Z_MIN = -600;
- float MAGN_Z_MAX = 600;
- // Magnetometer (extended calibration mode)
- // Set to true to use extended magnetometer calibration (compensates hard & soft iron errors)
- boolean CALIBRATION__MAGN_USE_EXTENDED = false;
- float magn_ellipsoid_center[3] = {0, 0, 0};
- float magn_ellipsoid_transform[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
- // Gyroscope
- // "gyro x,y,z (current/average) = .../OFFSET_X .../OFFSET_Y .../OFFSET_Z
- float GYRO_AVERAGE_OFFSET_X = 0.0;
- float GYRO_AVERAGE_OFFSET_Y = 0.0;
- float GYRO_AVERAGE_OFFSET_Z = 0.0;
- // DEBUG OPTIONS
- /*****************************************************************/
- // When set to true, gyro drift correction will not be applied
- #define DEBUG__NO_DRIFT_CORRECTION false
- // Print elapsed time after each I/O loop
- #define DEBUG__PRINT_LOOP_TIME false
- /*****************************************************************/
- /****************** END OF USER SETUP AREA! *********************/
- /*****************************************************************/
- // Check if hardware version code is defined
- #ifndef HW__VERSION_CODE
- // Generate compile error
- #error YOU HAVE TO SELECT THE HARDWARE YOU ARE USING! See "HARDWARE OPTIONS" in "USER SETUP AREA" at top of Razor_AHRS.ino!
- #endif
- #include <Wire.h>
- #define GRAVITY 256.0f // "1G reference" used for DCM filter and accelerometer calibration
- // Sensor calibration scale and offset values
- float ACCEL_X_OFFSET = ((ACCEL_X_MIN + ACCEL_X_MAX) / 2.0f);
- float ACCEL_Y_OFFSET = ((ACCEL_Y_MIN + ACCEL_Y_MAX) / 2.0f);
- float ACCEL_Z_OFFSET = ((ACCEL_Z_MIN + ACCEL_Z_MAX) / 2.0f);
- float ACCEL_X_SCALE = (GRAVITY / (ACCEL_X_MAX - ACCEL_X_OFFSET));
- float ACCEL_Y_SCALE = (GRAVITY / (ACCEL_Y_MAX - ACCEL_Y_OFFSET));
- float ACCEL_Z_SCALE = (GRAVITY / (ACCEL_Z_MAX - ACCEL_Z_OFFSET));
- float MAGN_X_OFFSET = ((MAGN_X_MIN + MAGN_X_MAX) / 2.0f);
- float MAGN_Y_OFFSET = ((MAGN_Y_MIN + MAGN_Y_MAX) / 2.0f);
- float MAGN_Z_OFFSET = ((MAGN_Z_MIN + MAGN_Z_MAX) / 2.0f);
- float MAGN_X_SCALE = (100.0f / (MAGN_X_MAX - MAGN_X_OFFSET));
- float MAGN_Y_SCALE = (100.0f / (MAGN_Y_MAX - MAGN_Y_OFFSET));
- float MAGN_Z_SCALE = (100.0f / (MAGN_Z_MAX - MAGN_Z_OFFSET));
- // Gain for gyroscope (ITG-3200)
- #define GYRO_GAIN 0.06957 // Same gain on all axes
- #define GYRO_SCALED_RAD(x) (x * TO_RAD(GYRO_GAIN)) // Calculate the scaled gyro readings in radians per second
- // DCM parameters
- #define Kp_ROLLPITCH 0.02f
- #define Ki_ROLLPITCH 0.00002f
- #define Kp_YAW 1.2f
- #define Ki_YAW 0.00002f
- // Stuff
- #define STATUS_LED_PIN 13 // Pin number of status LED
- #define TO_RAD(x) (x * 0.01745329252) // *pi/180
- #define TO_DEG(x) (x * 57.2957795131) // *180/pi
- // Sensor variables
- float accel[3]; // Actually stores the NEGATED acceleration (equals gravity, if board not moving).
- float accel_min[3];
- float accel_max[3];
- float magnetom[3];
- float magnetom_min[3];
- float magnetom_max[3];
- float magnetom_tmp[3];
- float gyro[3];
- float gyro_average[3];
- int gyro_num_samples = 0;
- // DCM variables
- float MAG_Heading;
- float Accel_Vector[3]= {0, 0, 0}; // Store the acceleration in a vector
- float Gyro_Vector[3]= {0, 0, 0}; // Store the gyros turn rate in a vector
- float Omega_Vector[3]= {0, 0, 0}; // Corrected Gyro_Vector data
- float Omega_P[3]= {0, 0, 0}; // Omega Proportional correction
- float Omega_I[3]= {0, 0, 0}; // Omega Integrator
- float Omega[3]= {0, 0, 0};
- float errorRollPitch[3] = {0, 0, 0};
- float errorYaw[3] = {0, 0, 0};
- float DCM_Matrix[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};
- float Update_Matrix[3][3] = {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}};
- float Temporary_Matrix[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
- // Euler angles
- float yaw;
- float pitch;
- float roll;
- // DCM timing in the main loop
- unsigned long timestamp;
- unsigned long timestamp_old;
- float G_Dt; // Integration time for DCM algorithm
- // More output-state variables
- boolean output_stream_on;
- boolean output_single_on;
- int curr_calibration_sensor = 0;
- boolean reset_calibration_session_flag = true;
- int num_accel_errors = 0;
- int num_magn_errors = 0;
- int num_gyro_errors = 0;
- void read_sensors() {
- Read_Gyro(); // Read gyroscope
- Read_Accel(); // Read accelerometer
- Read_Magn(); // Read magnetometer
- }
- //should be called after every #ca calibration command
- void recalculateAccelCalibration(){
- ACCEL_X_OFFSET = ((ACCEL_X_MIN + ACCEL_X_MAX) / 2.0f);
- ACCEL_Y_OFFSET = ((ACCEL_Y_MIN + ACCEL_Y_MAX) / 2.0f);
- ACCEL_Z_OFFSET = ((ACCEL_Z_MIN + ACCEL_Z_MAX) / 2.0f);
- ACCEL_X_SCALE = (GRAVITY / (ACCEL_X_MAX - ACCEL_X_OFFSET));
- ACCEL_Y_SCALE = (GRAVITY / (ACCEL_Y_MAX - ACCEL_Y_OFFSET));
- ACCEL_Z_SCALE = (GRAVITY / (ACCEL_Z_MAX - ACCEL_Z_OFFSET));
- }
- //should be called after every #cm calibration command
- void recalculateMagnCalibration(){
- MAGN_X_OFFSET = ((MAGN_X_MIN + MAGN_X_MAX) / 2.0f);
- MAGN_Y_OFFSET = ((MAGN_Y_MIN + MAGN_Y_MAX) / 2.0f);
- MAGN_Z_OFFSET = ((MAGN_Z_MIN + MAGN_Z_MAX) / 2.0f);
- MAGN_X_SCALE = (100.0f / (MAGN_X_MAX - MAGN_X_OFFSET));
- MAGN_Y_SCALE = (100.0f / (MAGN_Y_MAX - MAGN_Y_OFFSET));
- MAGN_Z_SCALE = (100.0f / (MAGN_Z_MAX - MAGN_Z_OFFSET));
- }
- // Read every sensor and record a time stamp
- // Init DCM with unfiltered orientation
- // TODO re-init global vars?
- void reset_sensor_fusion() {
- float temp1[3];
- float temp2[3];
- float xAxis[] = {1.0f, 0.0f, 0.0f};
- read_sensors();
- timestamp = millis();
-
- // GET PITCH
- // Using y-z-plane-component/x-component of gravity vector
- pitch = -atan2(accel[0], sqrt(accel[1] * accel[1] + accel[2] * accel[2]));
-
- // GET ROLL
- // Compensate pitch of gravity vector
- Vector_Cross_Product(temp1, accel, xAxis);
- Vector_Cross_Product(temp2, xAxis, temp1);
- // Normally using x-z-plane-component/y-component of compensated gravity vector
- // roll = atan2(temp2[1], sqrt(temp2[0] * temp2[0] + temp2[2] * temp2[2]));
- // Since we compensated for pitch, x-z-plane-component equals z-component:
- roll = atan2(temp2[1], temp2[2]);
-
- // GET YAW
- Compass_Heading();
- yaw = MAG_Heading;
-
- // Init rotation matrix
- init_rotation_matrix(DCM_Matrix, yaw, pitch, roll);
- }
- // Apply calibration to raw sensor readings
- void compensate_sensor_errors() {
- // Compensate accelerometer error
- accel[0] = (accel[0] - ACCEL_X_OFFSET) * ACCEL_X_SCALE;
- accel[1] = (accel[1] - ACCEL_Y_OFFSET) * ACCEL_Y_SCALE;
- accel[2] = (accel[2] - ACCEL_Z_OFFSET) * ACCEL_Z_SCALE;
-
- // Compensate magnetometer error
- if (CALIBRATION__MAGN_USE_EXTENDED){
- for (int i = 0; i < 3; i++)
- magnetom_tmp[i] = magnetom[i] - magn_ellipsoid_center[i];
- Matrix_Vector_Multiply(magn_ellipsoid_transform, magnetom_tmp, magnetom);
- }else{
- magnetom[0] = (magnetom[0] - MAGN_X_OFFSET) * MAGN_X_SCALE;
- magnetom[1] = (magnetom[1] - MAGN_Y_OFFSET) * MAGN_Y_SCALE;
- magnetom[2] = (magnetom[2] - MAGN_Z_OFFSET) * MAGN_Z_SCALE;
- }
-
- // Compensate gyroscope error
- gyro[0] -= GYRO_AVERAGE_OFFSET_X;
- gyro[1] -= GYRO_AVERAGE_OFFSET_Y;
- gyro[2] -= GYRO_AVERAGE_OFFSET_Z;
- }
- // Reset calibration session if reset_calibration_session_flag is set
- void check_reset_calibration_session()
- {
- // Raw sensor values have to be read already, but no error compensation applied
- // Reset this calibration session?
- if (!reset_calibration_session_flag) return;
-
- // Reset acc and mag calibration variables
- for (int i = 0; i < 3; i++) {
- accel_min[i] = accel_max[i] = accel[i];
- magnetom_min[i] = magnetom_max[i] = magnetom[i];
- }
- // Reset gyro calibration variables
- gyro_num_samples = 0; // Reset gyro calibration averaging
- gyro_average[0] = gyro_average[1] = gyro_average[2] = 0.0f;
-
- reset_calibration_session_flag = false;
- }
- void turn_output_stream_on()
- {
- output_stream_on = true;
- digitalWrite(STATUS_LED_PIN, HIGH);
- }
- void turn_output_stream_off()
- {
- output_stream_on = false;
- digitalWrite(STATUS_LED_PIN, LOW);
- }
- // Blocks until another byte is available on serial port
- char readChar()
- {
- while (Serial.available() < 1) { } // Block
- return Serial.read();
- }
- void setup()
- {
- // Init serial output
- Serial.begin(OUTPUT__BAUD_RATE);
-
- // Init status LED
- pinMode (STATUS_LED_PIN, OUTPUT);
- digitalWrite(STATUS_LED_PIN, LOW);
- // Init sensors
- delay(50); // Give sensors enough time to start
- I2C_Init();
- Accel_Init();
- Magn_Init();
- Gyro_Init();
-
- // Read sensors, init DCM algorithm
- delay(20); // Give sensors enough time to collect data
- reset_sensor_fusion();
- // Init output
- #if (OUTPUT__HAS_RN_BLUETOOTH == true) || (OUTPUT__STARTUP_STREAM_ON == false)
- turn_output_stream_off();
- #else
- turn_output_stream_on();
- #endif
- }
- // Main loop
- void loop()
- {
- // Read incoming control messages
- if (Serial.available() >= 2)
- {
- if (Serial.read() == '#') // Start of new control message
- {
- int command = Serial.read(); // Commands
- if (command == 'f') // request one output _f_rame
- output_single_on = true;
- else if (command == 's') // _s_ynch request
- {
- // Read ID
- byte id[2];
- id[0] = readChar();
- id[1] = readChar();
-
- // Reply with synch message
- Serial.print("#SYNCH");
- Serial.write(id, 2);
- Serial.println();
- }
- else if (command == 'o') // Set _o_utput mode
- {
- char output_param = readChar();
- if (output_param == 'n') // Calibrate _n_ext sensor
- {
- curr_calibration_sensor = (curr_calibration_sensor + 1) % 3;
- reset_calibration_session_flag = true;
- }
- else if (output_param == 't') // Output angles as _t_ext
- {
- output_mode = OUTPUT__MODE_ANGLES;
- output_format = OUTPUT__FORMAT_TEXT;
- }
- else if (output_param == 'b') // Output angles in _b_inary format
- {
- output_mode = OUTPUT__MODE_ANGLES;
- output_format = OUTPUT__FORMAT_BINARY;
- }
- else if (output_param == 'c') // Go to _c_alibration mode
- {
- output_mode = OUTPUT__MODE_CALIBRATE_SENSORS;
- reset_calibration_session_flag = true;
- }
- else if (output_param == 'x') // Go to _c_alibration mode for both sensor and angle comment: Tang
- {
- output_mode = OUTPUT__MODE_ANGLES_AG_SENSORS;
- reset_calibration_session_flag = true;
- }
- else if (output_param == 's') // Output _s_ensor values
- {
- char values_param = readChar();
- char format_param = readChar();
- if (values_param == 'r') // Output _r_aw sensor values
- output_mode = OUTPUT__MODE_SENSORS_RAW;
- else if (values_param == 'c') // Output _c_alibrated sensor values
- output_mode = OUTPUT__MODE_SENSORS_CALIB;
- else if (values_param == 'b') // Output _b_oth sensor values (raw and calibrated)
- output_mode = OUTPUT__MODE_SENSORS_BOTH;
- if (format_param == 't') // Output values as _t_text
- output_format = OUTPUT__FORMAT_TEXT;
- else if (format_param == 'b') // Output values in _b_inary format
- output_format = OUTPUT__FORMAT_BINARY;
- }
- else if (output_param == '0') // Disable continuous streaming output
- {
- turn_output_stream_off();
- reset_calibration_session_flag = true;
- }
- else if (output_param == '1') // Enable continuous streaming output
- {
- reset_calibration_session_flag = true;
- turn_output_stream_on();
- }
- else if (output_param == 'e') // _e_rror output settings
- {
- char error_param = readChar();
- if (error_param == '0') output_errors = false;
- else if (error_param == '1') output_errors = true;
- else if (error_param == 'c') // get error count
- {
- Serial.print("#AMG-ERR:");
- Serial.print(num_accel_errors); Serial.print(",");
- Serial.print(num_magn_errors); Serial.print(",");
- Serial.println(num_gyro_errors);
- }
- }
- }
- else if (command == 'p') // Set _p_rint calibration values
- {
- Serial.print("ACCEL_X_MIN:");Serial.println(ACCEL_X_MIN);
- Serial.print("ACCEL_X_MAX:");Serial.println(ACCEL_X_MAX);
- Serial.print("ACCEL_Y_MIN:");Serial.println(ACCEL_Y_MIN);
- Serial.print("ACCEL_Y_MAX:");Serial.println(ACCEL_Y_MAX);
- Serial.print("ACCEL_Z_MIN:");Serial.println(ACCEL_Z_MIN);
- Serial.print("ACCEL_Z_MAX:");Serial.println(ACCEL_Z_MAX);
- Serial.println("");
- Serial.print("MAGN_X_MIN:");Serial.println(MAGN_X_MIN);
- Serial.print("MAGN_X_MAX:");Serial.println(MAGN_X_MAX);
- Serial.print("MAGN_Y_MIN:");Serial.println(MAGN_Y_MIN);
- Serial.print("MAGN_Y_MAX:");Serial.println(MAGN_Y_MAX);
- Serial.print("MAGN_Z_MIN:");Serial.println(MAGN_Z_MIN);
- Serial.print("MAGN_Z_MAX:");Serial.println(MAGN_Z_MAX);
- Serial.println("");
- Serial.print("MAGN_USE_EXTENDED:");
- if (CALIBRATION__MAGN_USE_EXTENDED)
- Serial.println("true");
- else
- Serial.println("false");
- Serial.print("magn_ellipsoid_center:[");Serial.print(magn_ellipsoid_center[0],4);Serial.print(",");
- Serial.print(magn_ellipsoid_center[1],4);Serial.print(",");
- Serial.print(magn_ellipsoid_center[2],4);Serial.println("]");
- Serial.print("magn_ellipsoid_transform:[");
- for(int i = 0; i < 3; i++){
- Serial.print("[");
- for(int j = 0; j < 3; j++){
- Serial.print(magn_ellipsoid_transform[i][j],7);
- if (j < 2) Serial.print(",");
- }
- Serial.print("]");
- if (i < 2) Serial.print(",");
- }
- Serial.println("]");
- Serial.println("");
- Serial.print("GYRO_AVERAGE_OFFSET_X:");Serial.println(GYRO_AVERAGE_OFFSET_X);
- Serial.print("GYRO_AVERAGE_OFFSET_Y:");Serial.println(GYRO_AVERAGE_OFFSET_Y);
- Serial.print("GYRO_AVERAGE_OFFSET_Z:");Serial.println(GYRO_AVERAGE_OFFSET_Z);
- }
- else if (command == 'c') // Set _i_nput mode
- {
- char input_param = readChar();
- if (input_param == 'a') // Calibrate _a_ccelerometer
- {
- char axis_param = readChar();
- char type_param = readChar();
- float value_param = Serial.parseFloat();
- if (axis_param == 'x') // x value
- {
- if (type_param == 'm')
- ACCEL_X_MIN = value_param;
- else if (type_param == 'M')
- ACCEL_X_MAX = value_param;
- }
- else if (axis_param == 'y') // y value
- {
- if (type_param == 'm')
- ACCEL_Y_MIN = value_param;
- else if (type_param == 'M')
- ACCEL_Y_MAX = value_param;
- }
- else if (axis_param == 'z') // z value
- {
- if (type_param == 'm')
- ACCEL_Z_MIN = value_param;
- else if (type_param == 'M')
- ACCEL_Z_MAX = value_param;
- }
- recalculateAccelCalibration();
- }
- else if (input_param == 'm') // Calibrate _m_agnetometer (basic)
- {
- //disable extended magnetometer calibration
- CALIBRATION__MAGN_USE_EXTENDED = false;
- char axis_param = readChar();
- char type_param = readChar();
- float value_param = Serial.parseFloat();
- if (axis_param == 'x') // x value
- {
- if (type_param == 'm')
- MAGN_X_MIN = value_param;
- else if (type_param == 'M')
- MAGN_X_MAX = value_param;
- }
- else if (axis_param == 'y') // y value
- {
- if (type_param == 'm')
- MAGN_Y_MIN = value_param;
- else if (type_param == 'M')
- MAGN_Y_MAX = value_param;
- }
- else if (axis_param == 'z') // z value
- {
- if (type_param == 'm')
- MAGN_Z_MIN = value_param;
- else if (type_param == 'M')
- MAGN_Z_MAX = value_param;
- }
- recalculateMagnCalibration();
- }
- else if (input_param == 'c') // Calibrate magnetometerellipsoid_c_enter (extended)
- {
- //enable extended magnetometer calibration
- CALIBRATION__MAGN_USE_EXTENDED = true;
- char axis_param = readChar();
- float value_param = Serial.parseFloat();
- if (axis_param == 'x') // x value
- magn_ellipsoid_center[0] = value_param;
- else if (axis_param == 'y') // y value
- magn_ellipsoid_center[1] = value_param;
- else if (axis_param == 'z') // z value
- magn_ellipsoid_center[2] = value_param;
- }
- else if (input_param == 't') // Calibrate magnetometerellipsoid_t_ransform (extended)
- {
- //enable extended magnetometer calibration
- CALIBRATION__MAGN_USE_EXTENDED = true;
- char axis_param = readChar();
- char type_param = readChar();
- float value_param = Serial.parseFloat();
- if (axis_param == 'x') // x value
- {
- if (type_param == 'X')
- magn_ellipsoid_transform[0][0] = value_param;
- else if (type_param == 'Y')
- magn_ellipsoid_transform[0][1] = value_param;
- else if (type_param == 'Z')
- magn_ellipsoid_transform[0][2] = value_param;
- }
- else if (axis_param == 'y') // y value
- {
- if (type_param == 'X')
- magn_ellipsoid_transform[1][0] = value_param;
- else if (type_param == 'Y')
- magn_ellipsoid_transform[1][1] = value_param;
- else if (type_param == 'Z')
- magn_ellipsoid_transform[1][2] = value_param;
- }
- else if (axis_param == 'z') // z value
- {
- if (type_param == 'X')
- magn_ellipsoid_transform[2][0] = value_param;
- else if (type_param == 'Y')
- magn_ellipsoid_transform[2][1] = value_param;
- else if (type_param == 'Z')
- magn_ellipsoid_transform[2][2] = value_param;
- }
- }
- else if (input_param == 'g') // Calibrate _g_yro
- {
- char axis_param = readChar();
- float value_param = Serial.parseFloat();
- if (axis_param == 'x') // x value
- GYRO_AVERAGE_OFFSET_X = value_param;
- else if (axis_param == 'y') // y value
- GYRO_AVERAGE_OFFSET_Y = value_param;
- else if (axis_param == 'z') // z value
- GYRO_AVERAGE_OFFSET_Z = value_param;
- }
- }
- #if OUTPUT__HAS_RN_BLUETOOTH == true
- // Read messages from bluetooth module
- // For this to work, the connect/disconnect message prefix of the module has to be set to "#".
- else if (command == 'C') // Bluetooth "#CONNECT" message (does the same as "#o1")
- turn_output_stream_on();
- else if (command == 'D') // Bluetooth "#DISCONNECT" message (does the same as "#o0")
- turn_output_stream_off();
- #endif // OUTPUT__HAS_RN_BLUETOOTH == true
- }
- else
- { } // Skip character
- }
- // Time to read the sensors again?
- if((millis() - timestamp) >= OUTPUT__DATA_INTERVAL)
- {
- timestamp_old = timestamp;
- timestamp = millis();
- if (timestamp > timestamp_old)
- G_Dt = (float) (timestamp - timestamp_old) / 1000.0f; // Real time of loop run. We use this on the DCM algorithm (gyro integration time)
- else G_Dt = 0;
- // Update sensor readings
- read_sensors();
- if (output_mode == OUTPUT__MODE_CALIBRATE_SENSORS) // We're in calibration mode
- {
- check_reset_calibration_session(); // Check if this session needs a reset
- if (output_stream_on || output_single_on) output_calibration(curr_calibration_sensor);
- }
- else if (output_mode == OUTPUT__MODE_ANGLES) // Output angles
- {
- // Apply sensor calibration
- compensate_sensor_errors();
-
- // Run DCM algorithm
- Compass_Heading(); // Calculate magnetic heading
- Matrix_update();
- Normalize();
- Drift_correction();
- Euler_angles();
-
- if (output_stream_on || output_single_on) output_angles();
- }
- else if (output_mode == OUTPUT__MODE_ANGLES_AG_SENSORS) // Output angles + accel + rot. vel
- {
- // Apply sensor calibration
- compensate_sensor_errors();
-
- // Run DCM algorithm
- Compass_Heading(); // Calculate magnetic heading
- Matrix_update();
- Normalize();
- Drift_correction();
- Euler_angles();
-
- if (output_stream_on || output_single_on) output_both_angles_and_sensors_text();
- }
- else // Output sensor values
- {
- if (output_stream_on || output_single_on) output_sensors();
- }
-
- output_single_on = false;
-
- #if DEBUG__PRINT_LOOP_TIME == true
- Serial.print("loop time (ms) = ");
- Serial.println(millis() - timestamp);
- #endif
- }
- #if DEBUG__PRINT_LOOP_TIME == true
- else
- {
- Serial.println("waiting...");
- }
- #endif
- }
|