123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125 |
- History
- =======
- 1.2.3 (2018-08-21)
- ------------------
- * You can now pass model="small" to face_landmarks() to use the 5-point face model instead of the 68-point model.
- * Now officially supporting Python 3.7
- * New example of using this library in a Jupyter Notebook
- 1.2.2 (2018-04-02)
- ------------------
- * Added the face_detection CLI command
- * Removed dependencies on scipy to make installation easier
- * Cleaned up KNN example and fixed a bug with drawing fonts to label detected faces in the demo
- 1.2.1 (2018-02-01)
- ------------------
- * Fixed version numbering inside of module code.
- 1.2.0 (2018-02-01)
- ------------------
- * Fixed a bug where batch size parameter didn't work correctly when doing batch face detections on GPU.
- * Updated OpenCV examples to do proper BGR -> RGB conversion
- * Updated webcam examples to avoid common mistakes and reduce support questions
- * Added a KNN classification example
- * Added an example of automatically blurring faces in images or videos
- * Updated Dockerfile example to use dlib v19.9 which removes the boost dependency.
- 1.1.0 (2017-09-23)
- ------------------
- * Will use dlib's 5-point face pose estimator when possible for speed (instead of 68-point face pose esimator)
- * dlib v19.7 is now the minimum required version
- * face_recognition_models v0.3.0 is now the minimum required version
- 1.0.0 (2017-08-29)
- ------------------
- * Added support for dlib's CNN face detection model via model="cnn" parameter on face detecion call
- * Added support for GPU batched face detections using dlib's CNN face detector model
- * Added find_faces_in_picture_cnn.py to examples
- * Added find_faces_in_batches.py to examples
- * Added face_rec_from_video_file.py to examples
- * dlib v19.5 is now the minimum required version
- * face_recognition_models v0.2.0 is now the minimum required version
- 0.2.2 (2017-07-07)
- ------------------
- * Added --show-distance to cli
- * Fixed a bug where --tolerance was ignored in cli if testing a single image
- * Added benchmark.py to examples
- 0.2.1 (2017-07-03)
- ------------------
- * Added --tolerance to cli
- 0.2.0 (2017-06-03)
- ------------------
- * The CLI can now take advantage of multiple CPUs. Just pass in the -cpus X parameter where X is the number of CPUs to use.
- * Added face_distance.py example
- * Improved CLI tests to actually test the CLI functionality
- * Updated facerec_on_raspberry_pi.py to capture in rgb (not bgr) format.
- 0.1.14 (2017-04-22)
- -------------------
- * Fixed a ValueError crash when using the CLI on Python 2.7
- 0.1.13 (2017-04-20)
- -------------------
- * Raspberry Pi support.
- 0.1.12 (2017-04-13)
- -------------------
- * Fixed: Face landmarks wasn't returning all chin points.
- 0.1.11 (2017-03-30)
- -------------------
- * Fixed a minor bug in the command-line interface.
- 0.1.10 (2017-03-21)
- -------------------
- * Minor pref improvements with face comparisons.
- * Test updates.
- 0.1.9 (2017-03-16)
- ------------------
- * Fix minimum scipy version required.
- 0.1.8 (2017-03-16)
- ------------------
- * Fix missing Pillow dependency.
- 0.1.7 (2017-03-13)
- ------------------
- * First working release.
|