HISTORY.rst 3.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125
  1. History
  2. =======
  3. 1.2.3 (2018-08-21)
  4. ------------------
  5. * You can now pass model="small" to face_landmarks() to use the 5-point face model instead of the 68-point model.
  6. * Now officially supporting Python 3.7
  7. * New example of using this library in a Jupyter Notebook
  8. 1.2.2 (2018-04-02)
  9. ------------------
  10. * Added the face_detection CLI command
  11. * Removed dependencies on scipy to make installation easier
  12. * Cleaned up KNN example and fixed a bug with drawing fonts to label detected faces in the demo
  13. 1.2.1 (2018-02-01)
  14. ------------------
  15. * Fixed version numbering inside of module code.
  16. 1.2.0 (2018-02-01)
  17. ------------------
  18. * Fixed a bug where batch size parameter didn't work correctly when doing batch face detections on GPU.
  19. * Updated OpenCV examples to do proper BGR -> RGB conversion
  20. * Updated webcam examples to avoid common mistakes and reduce support questions
  21. * Added a KNN classification example
  22. * Added an example of automatically blurring faces in images or videos
  23. * Updated Dockerfile example to use dlib v19.9 which removes the boost dependency.
  24. 1.1.0 (2017-09-23)
  25. ------------------
  26. * Will use dlib's 5-point face pose estimator when possible for speed (instead of 68-point face pose esimator)
  27. * dlib v19.7 is now the minimum required version
  28. * face_recognition_models v0.3.0 is now the minimum required version
  29. 1.0.0 (2017-08-29)
  30. ------------------
  31. * Added support for dlib's CNN face detection model via model="cnn" parameter on face detecion call
  32. * Added support for GPU batched face detections using dlib's CNN face detector model
  33. * Added find_faces_in_picture_cnn.py to examples
  34. * Added find_faces_in_batches.py to examples
  35. * Added face_rec_from_video_file.py to examples
  36. * dlib v19.5 is now the minimum required version
  37. * face_recognition_models v0.2.0 is now the minimum required version
  38. 0.2.2 (2017-07-07)
  39. ------------------
  40. * Added --show-distance to cli
  41. * Fixed a bug where --tolerance was ignored in cli if testing a single image
  42. * Added benchmark.py to examples
  43. 0.2.1 (2017-07-03)
  44. ------------------
  45. * Added --tolerance to cli
  46. 0.2.0 (2017-06-03)
  47. ------------------
  48. * The CLI can now take advantage of multiple CPUs. Just pass in the -cpus X parameter where X is the number of CPUs to use.
  49. * Added face_distance.py example
  50. * Improved CLI tests to actually test the CLI functionality
  51. * Updated facerec_on_raspberry_pi.py to capture in rgb (not bgr) format.
  52. 0.1.14 (2017-04-22)
  53. -------------------
  54. * Fixed a ValueError crash when using the CLI on Python 2.7
  55. 0.1.13 (2017-04-20)
  56. -------------------
  57. * Raspberry Pi support.
  58. 0.1.12 (2017-04-13)
  59. -------------------
  60. * Fixed: Face landmarks wasn't returning all chin points.
  61. 0.1.11 (2017-03-30)
  62. -------------------
  63. * Fixed a minor bug in the command-line interface.
  64. 0.1.10 (2017-03-21)
  65. -------------------
  66. * Minor pref improvements with face comparisons.
  67. * Test updates.
  68. 0.1.9 (2017-03-16)
  69. ------------------
  70. * Fix minimum scipy version required.
  71. 0.1.8 (2017-03-16)
  72. ------------------
  73. * Fix missing Pillow dependency.
  74. 0.1.7 (2017-03-13)
  75. ------------------
  76. * First working release.